Analisis Karakter Segmen Abnormal pada Citra Mamografi dengan Menggunakan Berbagai Metode Preprocessing Citra

Main Article Content

Ni Larasati Kartika Sari
Maria Oktavianti
Samsun Samsun

Abstract

Penelitian ini menganalisis pengaruh penerapan beberapa jenis algoritma preprocessing untuk mencari karakteristik segmen abnormal yang tampak pada citra mamografi. Mamografi merupakan pemeriksaan radiografi khusus payudara. Penerapan algoritma preprocessing yang terdiri dari metode filtering, contrast enhancement, sharpening, dan smoothing diharapkan dapat mengurangi noise dan meningkatkan kontras citra mamografi serta membantu ahli radiologi untuk melakukan diagnosis pada citra. Pada penelitian ini akan digunakan dua algoritma filtering yaitu median filter dan gaussian filter. Selain itu digunakan dua algoritma contrast enhancement yaitu global histogram equalization dan CLAHE (Contrast Limited Adaptive Histogram Equalization). Nilai piksel rata-rata segmen abnormal berkisar antara 206.9-213.3 dan rasio sumbu minor/mayor segmen abnormal berkisar antara 0.5-0.7.Pemilihan jenis metode filter (median filter dan gaussian filter) tidak mempengaruhi hasil nilai piksel rata-rata maupun rasio sumbu minor/mayor dan ukuran segmen abnormal, namun pemilihan jenis metode peningkatan kontras (CLAHE dan global histogram equalization) menghasilkan segmen abnormal dengan ukuran yang berbeda. Metode global histogram equalization menghasilkan segmen abnormal yang tidak dapat dibedakan dengan sekitarnya sehingga hasil ekstrasi segmen terlalu besar.

Article Details

How to Cite
Sari, N. L. K., Oktavianti, M., & Samsun, S. (2020). Analisis Karakter Segmen Abnormal pada Citra Mamografi dengan Menggunakan Berbagai Metode Preprocessing Citra. Jurnal Ilmiah Giga, 22(1), 1–8. https://doi.org/10.47313/jig.v22i1.737
Section
Articles

References

Manafe, D. (2014). Di Indonesia, kasus kanker payudara dan serviks tertinggi. Diakses pada 15 Januari 2018. http://www.beritasatu.com/kesehatan/164592-di-indonesia-kasus-kanker-payudara-dan-serviks-tertinggi.

Sirait, M. R. (2011). Pengetahuan dan sikap suami tentang kanker payudara yang diderita. Universitas Negeri Sumatera Utara: repository.usu.ac.id.

Bird, R.E. (1990). Professional quality assurance for mammography screening programs. Journal of Radiology, vol. 175, 587–605

Nishikawa RM: Current status and future directions of computer aided diagnosis in mammography. Comput Med Imaging Graph 31(4):224–235, 2007

Andreadis II, Spyrou GM, Nikita KS: A CAD scheme for mammography empowered with topological information from clustered microcalcifications atlases. IEEE J Biomed Health Inform 19(1): 166–173, 2015

Laxman, S., Dubey, R.B., Jaffery, Z.A., dan Zaheeruddin, Z. (2009). Segmentation and characterization of brain tumor from MR images. 2009 International Conference on Advances in Recent Technologies in Communication and Computing, 815-819.

Burhenne, L.W., Wood, S., dan D’Orsi C, et al. (2000). Potential contribution of computer-aided detection to the sensitivity of screening mammography. Radiology. 215:554–562.

Jalalian, A., Mashohor, S., Mahmud, R., Karasfi, B., Saripan, M. I. B. , Ramli, A. R. B. (2017). Foundation and Methodologies in Computer-Aided Diagnosis Systems For Breast Cancer Detection. EXCLI Journal 2017;16:113-137 – ISSN 1611-2156