Sistem Pencatatan Kehadiran Deteksi Wajah Menggunakan Metode Haar Feature Cascade Classifier
Main Article Content
Abstract
Biometric innovation is one source that can be used in security frameworks such as facial recognition as personal information. The human face has a lot of data and has the most normal and widely used attributes for the presentation of human character. As well as communicating feelings and considerations, faces can also be used to identify individuals. One of the innovations in the recognition statement applied to biometrics is the use of the human face as a recording system in the field of education. However, there are several circumstances related to the recording of student absenteeism currently occurring in the field of education, namely "Titip Absent". Therefore, in this study proposed a system that uses a student attendance recording system using computer technology to reduce the level of cheating when filling in attendance forms and the effectiveness of student data processing, the Haar Cascade classification method is used to record the student attendance process using a biometric system. The algorithm applied in the Haar Cascade classifier method uses a face detector called the "Cascade Classifier". The result of this study is an attendance application that can detect whether all users who have recorded attendance have been registered in the system with the distance between the face and the camera is 50 cm with an accuracy rate of 70%.
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
W. Sulistiyo, B. Suyanto, I. Hestiningsih, Mardiono, and Sukamto, “Rancang Bangun Prototipe Aplikasi Pengenalan Wajah untuk Sistem Absensi Alternatif dengan Metode Haar Like Feature dan Eigenface,” Jtet, 2014, [Online]. Available: https://jurnal.polines.ac.id/index.php/jtet/article/view/180/172.
A. W. Wibowo, A. Karima, Wiktasari, A. Yobioktabera, and S. Fahriah, “Pendeteksian dan Pengenalan Wajah Pada Foto Secara Real Time Dengan Haar Cascade dan Local Binary Pattern Histogram,” JTET (Jurnal Tek. Elektro Ter., 2020.
A. Zein, “Pendeteksian Multi Wajah dan Recognnition Secara Real Time Menggunakan Metoda Principle Component Analysis (PCA) dan Eigenface,” J. Teknol. Inf. ESIT, vol. 12, no. 01, pp. 1–7, 2018.
L. R. Yesy, D. Rosita, and D. Hanum, “Sistem Absensi Mahasiswa Berdasarkan Citra Wajah Menggunakan Metode Principal Component Analysis ( Pca ),” pp. 1–7, 2019.
P. Kenda and A. Witanti, “Sistem Presensi Berbasis Wajah Dengan Metode Haar Cascade,” pp. 419–429.
R. Prathivi and Y. Kurniawati, “Sistem Presensi Kelas Menggunakan Pengenalan Wajah Dengan Metode Haar Cascade Classifier,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 1, pp. 135–142, 2020, doi: 10.24176/simet.v11i1.3754.
C. Suhery and I. Ruslianto, “Identifikasi Wajah Manusia untuk Sistem Monitoring Kehadiran Perkuliahan menggunakan Ekstraksi Fitur Principal Component Analysis (PCA),” J. Edukasi dan Penelit. Inform., vol. 3, no. 1, p. 9, 2017, doi: 10.26418/jp.v3i1.19792.
B. Santoso and R. P. Kristianto, “Implementasi Penggunaan Opencv Pada Face Recognition Untuk Sistem Presensi Perkuliahan Mahasiswa,” Sistemasi, 2020, doi: 10.32520/stmsi.v9i2.822.
M. W. Septyanto, H. Sofyan, H. Jayadianti, O. S. Simanjuntak, and D. B. Prasetyo, “Aplikasi Presensi Pengenalan Wajah Dengan Menggunakan Algoritma Haar Cascade Classifier,” Telematika, 2020, doi: 10.31315/telematika.v16i2.3182.
Munawir, L. Fitria, and M. Hermasyah, “Implementasi Face Recognition pada Absensi Kehadiran Mahasiswa Menggunakan Metode Haar Cascade Classifier,” InfoTekJar J. Nas. Inform. dan Teknol. Jar., 2020, [Online]. Available: https://doi.org/10.30743/infotekjar.v5i1.1997.