Pemodelan 2.5 Dimensi (2.5D) untuk Deposit Pasir menggunakan Data DC Resistivity 2D pada Daerah Kecamatab Caringin Bogor

Authors

  • Tiara Aulianingtyas Program Studi Fisika, Universitas Nasional Jakarta
  • Puji Hartoyo Program Studi Fisika, Universitas Nasional Jakarta
  • Agus Kuswanto Program Studi Fisika, Universitas Nasional Jakarta

DOI:

https://doi.org/10.47313/jig.v25i1.1561

Keywords:

DC resistivity, wenner, sandstones, shallow-depth geophysics.

Abstract

Abstract. DC Resistivity 2D has been carried out to find sandstones deposits in Caringin District, Bogor. Wenner array with a total of 1 outcrop and 5 measuring lines with 10m spacing between electrodes was used to measure the length of each 470m length lines. The 2D data obtained from the measurements are then interpolated into a 3D cross-section and it can be seen that the potential for excavated sand is 10 to 20m below the surface with a thickness of 30-40 meters. A total of 1.005,711 cubic meters of sandatones are found in the field based on Volume Isosurface processing in the Demo version of ROCKWORKS20 software.

 

Abstrak. DC Resistivity 2D telah dilakukan untuk mencari deposit pasir hitam di Kecamatan caringin Bogor. Konfigurasi Wenner dengan tital 1 lintasan singkapan dan 5 lintasan pengukuran serta digunakan spasi antar elektroda 10 m untuk mengukur panjang lintasan masing-masing 470 m. Data 2D yang didapat dari pengukuran kemudian diinterpolasi ke dalam bentuk penampang 3D dan terlihat potensi pasir yang dapat digali berada 10 hingga 20 m di bawah permukaan dengan ketebalan 30- 40 meter. Total sejumlah kisaran 1.005.711,0 meter kubik pasir hitam terdapat di lapangan berdasarkan pengolahan Volume Isosurface di software ROCKWORKS20 versi Demo.

References

D. M. Loke, “Electrical imaging surveys for environmental and engineering studies - A practical guide to 2-D and 3-D surveys Copyright,” Cangkat Minden Lorong, vol. August 200, no. 1999, 2000.

R. V. Fisher, “Proposed classification of volcaniclastic sediments and rocks,” Bull. Geol. Soc.Am.,vol. 72, no. 9, 1961, doi: 10.1130/0016- 7606(1961)72[1409:PCOVSA]2.0.CO;2.

Badan Geologi, “G. Gede,” Kementerian Energi dan Sumber Daya Mineral, 2013.https://vsi.esdm.go.id/index.php/gunungapi/data-dasar-gunungapi/212-gede. (accessed May 21, 2021).

A. C. . H. Effendi, “Peta Geologi Lembar Bogor, Jawa,” 1998.

I. C. Alle, M. Descloitres, J. M. Vouillamoz, N. Yalo, F. M. A. Lawson, and A. C. Adihou, “Why 1D electrical resistivity techniques can result in inaccurate siting of boreholes in hard rock aquifers and why electrical resistivity tomography must be preferred: the example of Benin, West Africa,” J. African Earth Sci., vol. 139, 2018, doi: 10.1016/j.jafrearsci.2017.12.007

W. O. Raji and A. D. Adedoyin, “Dam safety assessment using 2D electrical resistivity geophysical survey and geological mapping,” J. King Saud Univ. - Sci., vol. 32, no. 1, 2020, doi: 10.1016/j.jksus.2019.10.016

J. Fan, A. Scheuermann, A. Guyot, T. Baumgartl, and D. A. Lockington, “Quantifying spatiotemporal dynamics of root-zone soil water in a mixed forest on subtropical coastal sand dune using surface ERT and spatial TDR,” J. Hydrol., vol. 523, 2015, doi: 10.1016/j.jhydrol.2015.01.064.

M. F. Hasan, H. Abuel-Naga, and E. C. Leong, “A modified series-parallel electrical resistivity model of saturated sand/clay mixture,” Eng. Geol., vol. 290, 2021, doi: 10.1016/j.enggeo.2021. 106193

A. Kuswanto, “Pengembangan Metode Geolistrik 4-D untuk Perembesan Bawah Tanah,” 2015.

J. M. Reynolds, An introduction to applied and environmental geophysics. 1997.

L. P. G. and R. E. S. W.M. Telford, Applied geophysics (second edition), vol. 69, no. 1–2. 1991.

W. Menke, Geophysical data analysis: Discrete inverse theory. 2018.

Downloads

Published

2022-07-19