Pengaruh Parameter Cetak Pada Nilai Kekerasan Serta Akurasi Dimensi Material Thermoplastic Elastomer (TPE) Hasil 3D Printing

Authors

  • Juan Pratama Universitas Darma Persada
  • Adam Zuyyinal Adib Universitas Gadjah Mada

DOI:

https://doi.org/10.47313/jig.v25i1.1712

Keywords:

3D printing, PLA, thermoplastic elastomer, dimensional cccuracy, shore D hardness, printing parameters.

Abstract

Abstract. The ability of Fused Deposition Modeling (FDM) 3D Printing technology to create complex objects makes this technology increasingly widely used. Apart from the advantages of FDM technology, the low dimensional accuracy and mechanical properties of FDM printed parts are one of the drawbacks of this process. In addition, developments in the use of elastic materials to create flexible products make the process of this technology requires special attention. This study focused on knowing the effect of process parameters, namely temperature and build orientation on dimensional accuracy and the value of hardness (Shore D Hardness) of the Thermoplastic Elastomer (TPE) material produced by FDM 3D Printing. The hardness test method refers to the ASTM D2240 standard for measuring Shore D hardness, while the dimensional accuracy is measured using a vernier caliper. The results showed that the temperature and build orientation had an influence on the accuracy and hardness values. The properties of TPE have different results from PLA which is completely shrunk. However, the porosity value does not have a significant effect on hardness, but the number of layers. The research results have been presented both in tables and graphically, and are briefly discussed in this study.

 

Abstrak. Kemampuan dari teknologi Fused Deposition Modeling (FDM) 3D Printing untuk membuat objek yang kompleks menjadikan teknologi ini semakin banyak digunakan secara luas. Terlepas dari kelebihan teknologi FDM, rendahnya akurasi dimensi serta sifat mekanis dari hasil cetak FDM menjadi salah satu kekurangan dari proses ini. Selain itu, perkembangan pada penggunaan material elastis untuk menciptakan produk yang fleksibel menjadikan proses dari teknologi ini membutuhkan perhatian khusus. Penelitian ini difokuskan untuk mengetahui pengaruh parameter proses yaitu suhu dan orientasi build terhadap akurasi dimensi serta nilai kekerasan (Shore D Hardness) dari material Thermoplastic Elastomer (TPE) hasil cetak FDM 3D Printing. Metode pengujian kekerasan mengacu pada standar ASTM D2240 untuk pengukuran Shore D hardness, sedangkan akurasi dimensi diukur menggunakan vernier caliper. Hasil penelitian menunjukkan bahwa suhu serta orientasi build memiliki pengaruh terhadap nilai akurasi maupun kekerasan. Sifat TPE memiliki hasil yang berbeda dengan PLA yang sepenuhnya mengalami penyusutan. Meskipun demikian, nilai porositas tidak memiliki pengaruh siginifikan terhadap kekerasan, tetapi jumlah lapisan lah yang berpengaruh terhadap kekerasan. Hasil penelitian telah ditampilkan baik dengan tabel maupun secara grafis, dan dibahas secara singkat pada penelitian ini.

References

J. Pratama et al., “A Review on Reinforcement Methods for Polymeric Materials Processed Using Fused Filament Fabrication (FFF),” Polymers (Basel)., vol. 13, no. 22, p. 4022, Nov. 2021, doi: 10.3390/polym13224022.

M. Dawoud, I. Taha, and S. J. Ebeid, “Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques,” J. Manuf. Process., vol. 21, pp. 39–45, Jan. 2016, doi: 10.1016/j.jmapro.2015.11.002.

S. . Masood and W. . Song, “Development of new metal/polymer materials for rapid tooling using Fused deposition modelling,” Mater. Des., vol. 25, no. 7, pp. 587–594, Oct. 2004, doi: 10.1016/j.matdes.2004.02.009.

E. Çantı and M. Aydın, “Effects of micro particle reinforcement on mechanical properties of 3D printed parts,” Rapid Prototyp. J., vol. 24, no. 1, pp. 171–176, Jan. 2018, doi: 10.1108/RPJ-06-2016-0095.

H. Jami, S. H. Masood, and W. Q. Song, “Dynamic Response of FDM Made ABS Parts in Different Part Orientations,” Adv. Mater. Res., vol. 748, pp. 291–294, Aug. 2013, doi: 10.4028/www.scientific.net/AMR.748.291.

A. K. Sood, R. K. Ohdar, and S. S. Mahapatra, “Parametric appraisal of mechanical property of fused deposition modelling processed parts,” Mater. Des., vol. 31, no. 1, pp. 287–295, Jan. 2010, doi: 10.1016/j.matdes.2009.06.016.

I. Durgun and R. Ertan, “Experimental investigation of FDM process for improvement of mechanical properties and production cost,” Rapid Prototyp. J., vol. 20, no. 3, pp. 228–235, Apr. 2014, doi: 10.1108/RPJ-10-2012-0091.

B. Huang, S. H. Masood, M. Nikzad, P. R. Venugopal, and A. Arivazhagan, “Dynamic Mechanical Properties of Fused Deposition Modelling Processed Polyphenylsulfone Material,” Am. J. Eng. Appl. Sci., vol. 9, no. 1, pp. 1–11, Jan. 2016, doi: 10.3844/ajeassp.2016.1.11.

L. Cheng, P. Zhang, E. Biyikli, J. Bai, J. Robbins, and A. To, “Efficient design optimization of variable-density cellular structures for additive manufacturing: theory and experimental validation,” Rapid Prototyp. J., vol. 23, no. 4, pp. 660–677, Jun. 2017, doi: 10.1108/RPJ-04-2016-0069.

J. Nsengimana, J. Van der Walt, E. Pei, and M. Miah, “Effect of post-processing on the dimensional accuracy of small plastic additive manufactured parts,” Rapid Prototyp. J., vol. 25, no. 1, pp. 1–12, Jan. 2019, doi: 10.1108/RPJ-09-2016-0153.

E. Paz, M. Jiménez, L. Romero, M. del M. Espinosa, and M. Domínguez, “Characterization of the resistance to abrasive chemical agents of test specimens of thermoplastic elastomeric polyurethane composite materials produced by additive manufacturing,” J. Appl. Polym. Sci., vol. 138, no. 32, p. 50791, Aug. 2021, doi: 10.1002/app.50791.

D. Manas et al., “Mechanical Properties Changes of Irradiated Thermoplastic Elastomer,” Polymers (Basel)., vol. 10, no. 1, p. 87, Jan. 2018, doi: 10.3390/polym10010087.

R. C. V. Fletes, E. O. C. López, P. O. Gudiño, E. Mendizábal, R. G. Núñez, and D. Rodrigue, “Ground tire rubber/polyamide 6 thermoplastic elastomers produced by dry blending and compression molding,” Prog. Rubber, Plast. Recycl. Technol., vol. 38, no. 1, pp. 38–55, Feb. 2022, doi: 10.1177/14777606211038956.

A. Garg, A. Bhattacharya, and A. Batish, “Effect of cold vapour treatment on geometric accuracy of fused deposition modelling parts,” Rapid Prototyp. J., vol. 23, no. 6, pp. 1226–1236, 2017, doi: 10.1108/RPJ-05-2016-0072.

Stephen Oluwashola Akande, “Dimensional Accuracy and Surface Finish Optimization of Fused Deposition Modelling Parts using Desirability Function Analysis,” Int. J. Eng. Res., vol. V4, no. 04, pp. 196–202, Apr. 2015, doi: 10.17577/IJERTV4IS040393.

G. Krolczyk, P. Raos, and S. Legutko, “Experimental analysis of surface roughness and surface texture of machined and fused deposition modelled parts,” Teh. Vjesn., vol. 21, no. 1, pp. 217–221, 2014, [Online]. Available: https://www.researchgate.net/publication/260287927_Experimental_analysis_of_surface_roughness_and_surface_texture_of_machined_and_fused_deposition_modelled_parts.

B. Arifvianto et al., “Tensile properties of the FFF-processed thermoplastic polyurethane (TPU) elastomer,” Int. J. Adv. Manuf. Technol., vol. 117, no. 5–6, pp. 1709–1719, 2021, doi: 10.1007/s00170-021-07712-0.

S. Ahn, M. Montero, D. Odell, S. Roundy, and P. K. Wright, “Anisotropic material properties of fused deposition modeling ABS,” Rapid Prototyp. J., vol. 8, no. 4, pp. 248–257, Oct. 2002, doi: 10.1108/13552540210441166.

J. Xiao and Y. Gao, “The manufacture of 3D printing of medical grade TPU,” Prog. Addit. Manuf., vol. 2, no. 3, pp. 117–123, Sep. 2017, doi: 10.1007/s40964-017-0023-1.

C. Hohimer, J. Christ, N. Aliheidari, C. Mo, and A. Ameli, “3D printed thermoplastic polyurethane with isotropic material properties,” in Behavior and Mechanics of Multifunctional Materials and Composites 2017, Apr. 2017, vol. 10165, p. 1016511, doi: 10.1117/12.2259810.

T. Nancharaiah, D. Ranga Raju, and V. Ramachandra Raju, “An experimental investigation on surface quality and dimensional accuracy of FDM components,” Int. J. Emerg. Technol., vol. 1, no. 2, pp. 106–111, 2010, [Online]. Available: https://www.researchgate.net/publication/267248480.

D.-Y. Chang and B.-H. Huang, “Studies on profile error and extruding aperture for the RP parts using the fused deposition modeling process,” Int. J. Adv. Manuf. Technol., vol. 53, no. 9–12, pp. 1027–1037, Apr. 2011, doi: 10.1007/s00170-010-2882-1.

V. K. Tiwary, A. P., A. S. Deshpande, and N. Rangaswamy, “Surface enhancement of FDM patterns to be used in rapid investment casting for making medical implants,” Rapid Prototyp. J., vol. 25, no. 5, pp. 904–914, Jun. 2019, doi: 10.1108/RPJ-07-2018-0176.

A. Armillotta, S. Bianchi, M. Cavallaro, and S. Minnella, “Edge quality in fused deposition modeling: II. experimental verification,” Rapid Prototyp. J., vol. 23, no. 4, pp. 686–695, Jun. 2017, doi: 10.1108/RPJ-02-2016-0021.

L. Shenzhen Esun Industrial Co., “Safety Data Sheet,” Mater. Saf. Data Sheet, vol. 4(2), no. 1, pp. 8–10, 2012, [Online]. Available: https://us.vwr.com/assetsvc/asset/en_US/id/16490607/contents.

American Society for Testing and Materials. ASTM., “Rubber Property—Durometer HardnesMaterials, E. I., Manufacturing, C. B., Hardness, D., & Laboratories, C. (2017). Rubber Property—Durometer Hardness 1Methods, S. T. (2008). Standard Test Methods for Rubber Property — Compression Set 1, i(Reapproved), 1–6.,” Astm D 2240, pp. 1–13, 2017, doi: 10.1520/D2240-15.2.

F. Ning, W. Cong, J. Qiu, J. Wei, and S. Wang, “Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling,” Compos. Part B Eng., vol. 80, pp. 369–378, Oct. 2015, doi: 10.1016/j.compositesb.2015.06.013.

H. L. Tekinalp et al., “Highly oriented carbon fiber–polymer composites via additive manufacturing,” Compos. Sci. Technol., vol. 105, pp. 144–150, Dec. 2014, doi: 10.1016/j.compscitech.2014.10.009.

B. Arifvianto, Y. B. Wirawan, U. A. Salim, S. Suyitno, and M. Mahardika, “Effects of extruder temperatures and raster orientations on mechanical properties of the FFF-processed polylactic-acid (PLA) material,” Rapid Prototyp. J., vol. 27, no. 10, pp. 1761–1775, Nov. 2021, doi: 10.1108/RPJ-10-2019-0270.

M. Ivey, G. W. Melenka, J. P. Carey, and C. Ayranci, “Characterizing short-fiber-reinforced composites produced using additive manufacturing,” Adv. Manuf. Polym. Compos. Sci., vol. 3, no. 3, pp. 81–91, Jul. 2017, doi: 10.1080/20550340.2017.1341125.

A. Sandi, M. Mahardika, S. I. Cahyono, and U. A. Salim, “Pengaruh variasi parameter cetak dan post process terhadap tingkat kekerasan spesimen hasil cetak tiga dimensi berbasis stereolithography ( SLA ),” Senat. 2021, vol. VII, pp. 33–46, 2022, doi: 10.28989/ senatik.v7i1.454.

M. Kurimoto, Y. Manabe, S. Mitsumoto, and Y. Suzuoki, “Layer interface effects on dielectric breakdown strength of 3D printed rubber insulator using stereolithography,” Addit. Manuf., vol. 46, no. June, p. 102069, Oct. 2021, doi: 10.1016/j.addma.2021.102069.

F. Bähr and E. Westkämper, “Correlations between Influencing Parameters and Quality Properties of Components Produced by Fused Deposition Modeling,” Procedia CIRP, vol. 72, no. January, pp. 1214–1219, 2018, doi: 10.1016/j.procir.2018.03.048.

Downloads

Published

2022-07-19