Analysis of North Jakarta 500 kV Extra High Voltage Transmission Line using Shunt Reactor

Main Article Content

Fuad Djauhari
Ruliyanta Ruliyanta
Raden Tegar Satria Putra
Adhyartha Keraf

Abstract

To meet the need for electrical energy in Indonesia, especially in DKI Jakarta, PT PLN (Persero) built the Muara Karang Combined-Cycle Power Plant (CCPP), which has daily start-stop facilities with a capacity of 500 MW and 500 kV extra high voltage overhead lines between Muara Karang – Duri Kosambi is 30 km long. In high voltage and extra high voltage transmission lines, channel filling appears where the receiving side voltage is greater or smaller than the sending side voltage. This research aims to design a shunt reactor for reactive power compensation that can overcome the problem of voltage differences. The modeling uses ETAP 20.0 software. The required shunt reactor value is 164.8 MVAR. There was a decrease in the reactive power produced at the Muara Karang CCPP plant by 157,878 MVAR due to installing a shunt reactor. So that it can improve the voltage drop on the load buses from Extra High Voltage Substation (EHVS) Duri Kosambi, with each having a voltage pu value on the Cengkareng GI bus of 92.52%, Duri Kosambi VVIP GI bus of 93.91%, Grogol Baru GI bus of 93.7%, and GIS Cengkareng at 94.25%. This can maintain reliability on the 500 kV Extra High Voltage Substation Muara Karang transmission line.

Article Details

How to Cite
Djauhari, F., Ruliyanta, R., Putra, R. T. S., & Keraf, A. (2025). Analysis of North Jakarta 500 kV Extra High Voltage Transmission Line using Shunt Reactor. Jurnal Ilmiah Giga, 27(2), 61–77. https://doi.org/10.47313/jig.v27i2.3539
Section
Articles
Author Biography

Ruliyanta Ruliyanta, Departement of Electrical Engineering, Universitas Nasional

Staf Dosen

FTS Unas

References

K. T. Mauriraya, R. Afrianda, and N. Pasra, “Upaya Meningkatkan Efisiensi PLTU Unit 5 PT. PJB Muara Karang Dengan Metode Audit Energi,” Sutet, vol. 9, no. 2, pp. 64–71, 2019, doi: 10.33322/sutet.v9i2.539.

K. Perindusrian;BPKIMI, “Pedoman Teknis Audit Energi Dalam Implementasi Konservasi Energi Dan Pengurangan Emisi CO2 Di Sektor Industri (Fase 1),” Kementeri. Perindustrian, vol. 1, p. 34, 2011.

S. A. Ahmadi, M. Sanaye-Pasand, P. Jafarian, and H. Mehrjerdi, “Adaptive Single-Phase Auto-Reclosing Approach for Shunt Compensated Transmission Lines,” IEEE Trans. Power Deliv., vol. 36, no. 3, pp. 1360–1369, 2021, doi: 10.1109/TPWRD.2020.3007392.

A. M. N. Putra and B. S. Putri, “Efektifitas Pemasangan Kapasitor di Gardu Induk Terhadap Kualitas Daya di Jaringan Transmisi,” J. Tek. Elektro ITP, vol. 10, no. 1, pp. 30–35, 2021, [Online]. Available: https://jte.itp.ac.id/index.php/jte/article/view/293%0Ahttps://jte.itp.ac.id/index.php/jte/article/download/293/840.

N. A. Adistia, J. W. Simatupang, M. Tampubolon, and F. Samsuri, “Pengaruh Nilai PIR dan Penggantian Elemen Resistor dengan DISP Aluminium terhadap GCB 420 KV,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 11, no. 1, p. 217, 2023, doi: 10.26760/elkomika.v11i1.217.

Aksan and S. Said, “Analisis Pengaruh Pemasangan Shunt Reactor Terhadap Sistem Tenaga Listrik,” Tek. Elektro Politek. Negeri Ujung Pandang, pp. 68–73, 2020.

M. G. Ippolito, F. Massaro, and R. Musca, “Improving angle stability by switching shunt reactors in mixed overhead cable lines. An Italian 400 kV case study,” Energies, vol. 12, no. 7, 2019, doi: 10.3390/en12071187.

Q. Huang et al., “Using Controlled Shunt Reactors for Voltage Stabilization on the Example of Real Electric Power System Using Controlled Shunt Reactors for Voltage Stabilization on the Example of Real Electric Power System,” IOP Conf. Ser. Mater. Sci. Eng., pp. 0–6, 2015, doi: 10.1088/1757-899X/93/1/012016.

P. Burhan, S. Graha, and J. Riadi, “Analisa Pengaturan Tegangan Menggunakan Reaktor Shunt Pada Saluran Transmisi 150 Kv Barikin-Tanjung,” INTEKNA, vol. 2, no. 2, pp. 137–144, 2013.

Mt. Prasetyo dan Andika Akhmad, Mt. Prasetyo, dan Andika Akhmad, and J. Teknik Elektro, “Efektifitas Pemakaian Reaktor Shunt Gitet Ungaran Dalam Mengkompensir Daya Reaktif Sutet 500 Kv Ungaran-Bandung Selatan,” Media Elektr., vol. 6, no. 2, pp. 42–56, 2012.

P. P. Rezky, O. Penangsang, and N. K. Aryani, “Studi Analisa Stabilitas Transien Sistem Jawa-Madura-Bali (Jamali) 500kV Setelah Masuknya Pembangkit Paiton 1000 MW Pada Tahun 2021,” J. Tek. ITS, vol. 5, no. 2, 2016, doi: 10.12962/j23373539.v5i2.16114.

A. Z. Abass, D. A. Pavlyuchenko, A. V. Prokopov, and S. Hussain Zozan, “Load Flow and Transient Stability Analyses for an Integrated Solar Combined Cycle Station in Iraqi Southern by Using ETAP,” J. Sib. Fed. Univ. Eng. Technol., vol. 14, no. 1, pp. 5–16, 2021, doi: 10.17516/1999-494x-0285.

A. Z. Abass, D. A. Pavlyuchenko, and Z. S. Hussain, “Survey about impact voltage instability and transient stability for a power system with an integrated solar combined cycle plant in Iraq by using ETAP,” Journal of Robotics and Control (JRC), vol. 2, no. 3. pp. 134–139, 2021, doi: 10.18196/jrc.2366.

T. Foqha, S. Alsadi, S. S. Refaat, and K. Abdulmawjood, “Experimental Validation of a Mitigation Method of Ferranti Effect in Transmission Line,” IEEE Access, vol. 11, no. February, pp. 15878–15895, 2023, doi: 10.1109/ACCESS.2023.3244826.

R. Ruliyanta, A. Keraf, and E. R. Nugroho, “Optimization of electric load flow at Jakarta International Stadium with Newton Raphson method Optimization of Electric Load Flow at Jakarta International Stadium with Newton Raphson Method,” vol. 050004, no. November, 2022.

T. S. Kishore and S. K. Singal, “Design economics of EHV power lines,” 2014 Int. Conf. Adv. Electr. Eng. ICAEE 2014, pp. 7–10, 2014, doi: 10.1109/ICAEE.2014.6838526.